题目内容

如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.

(1)求AD的长;

(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.

解答:

解:(1)连接BD,则∠DBE=90°,

∵四边形BCOE为平行四边形,

∴BC∥OE,BC=OE=1,

在Rt△ABD中,C为AD的中点,

∴BC=AD=1,

则AD=2;

(2)连接OB,

∵BC∥OD,BC=OD,

∴四边形BCDO为平行四边形,

∵AD为圆O的切线,

∴OD⊥AD,

∴四边形BCDO为矩形,

∴OB⊥BC,

则BC为圆O的切线.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网