题目内容
分析:由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.
解答:解:△ABC中,∠ACB=90°,∠A=22°,
∴∠B=90°-∠A=68°,
由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,
∴∠ADE=∠CED-∠A=46°,
∴∠BDC=
=67°.
故选C.
∴∠B=90°-∠A=68°,
由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,
∴∠ADE=∠CED-∠A=46°,
∴∠BDC=
| 180°-∠ADE |
| 2 |
故选C.
点评:此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.
练习册系列答案
相关题目