题目内容
一个不透明的袋子中只装有1个红球和2个蓝球,它们除颜色外其余都相同。现随机从袋中摸出两个球,颜色是一红一蓝的概率是 .
小明同学用手中一副三角尺想摆成∠α与∠β之和为90度,下面摆放方式中符合要求的是( )
如图,在Rt△ABC中,两直角边长分别为a、b,斜边长为c.若Rt△ABC的面积为3,且a+b=5.则(1)ab= ; (2)c= .
(本题14分)如图,点A和动点P在直线上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O。点C在点P右侧,PC=4,过点C作直线⊥,过点O作OD⊥于点D,交AB右侧的圆弧于点E。在射线CD上取点F,使DF=CD,以DE,DF为邻边作矩形DEGF,设AQ=
(1)用关于的代数式表示BQ,DF;
(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长;
(3)在点P的整个运动过程中,
①当AP为何值时,矩形DEGF是正方形?
②作直线BG交⊙O于另一点N,若BN的弦心距为1,求AP的长(直接写出答案)
(本题10分)(1)计算:
(2)化简:
不等式组的解是( )
A.x<1 B.x≥3 C.1≤x<3 D.1<x≤3
(本小题满分12分)已知直线y=kx+b(k≠0)过点F(0,1),与抛物线y=x2相交于B、C两点.
(1)如图1,当点C的横坐标为1时,求直线BC的解析式;
(2)在(1)的条件下,点M是直线BC上一动点,过点M作y轴的平行线,与抛物线交于点D,是否存在这样的点M,使得以M、D、O、F为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由;
(3)如图2,设(m<0),过点的直线l∥x轴,BR⊥l于R,CS⊥l于S,连接FR、FS.试判断△RFS的形状,并说明理由.
若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是( )
A.矩形
B.菱形
C.对角线相等的四边形
D.对角线互相垂直的四边形
按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是 .