题目内容
如图,点G是△ABC的重心,GE∥BC,如果BC=12,那么线段GE的长为___.
已知(a≠0,b≠0),则代数式 的值等于__.
如图,PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在上,若PA长为2,则△PEF的周长是 .
问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足 关系时,仍有EF=BE+FD.
【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据: =1.41, =1.73)
解不等式组 ,并求出的最小整数解.
据统计,2017年“五一节”期间,东台黄海森林公园共接待游客164 000人.将164 000用科学记数法表示为________.
下列计算正确的是( )
A. a2+a3=a5 B. (ab2)3= a2b5 C. 2a﹣a=2 D. 2a2×a -1=2a
89°25′48″=__°.
解下列方程组或不等式(组):
(1)解方程组
(2)解不等式组,并把解集在数轴上表示出来.