题目内容
如图,已知AB,AC分别是⊙O的直径和弦,点G为
上一点,GE⊥AB,垂足为点E,交AC于点D,过点C的切线与AB的延长线交于点F,与EG的延长线交于点P,连接AG.
(1)求证:△PCD是等腰三角形;
(2)若点D为AC的中点,且∠F=30°,BF=2,求△PCD的周长和AG的长.
![]()
(1)证明见解析
(2)△PCD的周长为3
;AG=6
【解析】
试题分析:(1)连结OC,由PF为切线可得∠OCP=90°,即∠1+∠PCD=90°,由GE⊥AB得∠GEA=90°,则∠2+∠ADE=90°,利用∠1=∠2得到∠PCD=∠ADE,根据对顶角相等得∠ADE=∠PDC,所以∠PCD=∠PDC,于是根据等腰三角形的判定定理得到△PCD是等腰三角形;
(2)连结OD,BG,在Rt△COF中根据含30度的直角三角形三边的关系可计算出OC=2,由于∠FOC=90°,∠F=30°,所以∠FOC=60°,由三角形外角性质可知∠1=∠2=30°,则∠PCD=90°﹣∠1=60°,从而△PCD为等边三角形;再由D为AC的中点,由垂径定理得到OD⊥AC,AD=CD,在Rt△OCD中,可得OD=
OC=1,CD=
OD=
,所以△PCD的周长为3
;然后在Rt△ADE中,可得DE=
AD=
,AE=
DE=
,由AB为直径得到∠AGB=90°,再证明Rt△AGE∽Rt△ABG,利用相似比可计算出AG.
试题解析:(1)连结OC,如图,
∵PC为⊙O的切线,
∴OC⊥PC,
∴∠OCP=90°,即∠1+∠PCD=90°,
∵GE⊥AB,
∴∠GEA=90°,
∴∠2+∠ADE=90°,
∵OA=OC,
∴∠1=∠2,
∴∠PCD=∠ADE,
而∠ADE=∠PDC,
∴∠PCD=∠PDC,
∴△PCD是等腰三角形;
![]()
(2)连结OD,BG,如图,
在Rt△COF中,∠F=30°,BF=2,
∴OF=2OC,即OB+2=2OC,
而OB=OC,
∴OC=2,
∵∠FOC=90°﹣∠F=60°,
∴∠1=∠2=30°,
∴∠PCD=90°﹣∠1=60°,
∴△PCD为等边三角形,
∵D为AC的中点,
∴OD⊥AC,
∴AD=CD,
在Rt△OCD中,OD=
OC=1,
CD=
OD=
,
∴△PCD的周长为3
;
在Rt△ADE中,AD=CD=
,
∴DE=
AD=
,
AE=
DE=
,
∵AB为直径,
∴∠AGB=90°,
而∠GAE=∠BAG,
∴Rt△AGE∽Rt△ABG,
∴AG:AB=AE:AG,
∴AG2=AE•AB=
×4=6,
∴AG=6.
考点:1、切线的性质;2、等腰三角形的判定;3、相似三角形的判定与性质;4圆周角定理
某区八年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分进行统计.
请你根据不完整的表格,回答下列问题:
成绩x(分) | 频数 | 频率 |
50≤x<60 | 10 | ____ |
60≤x<70 | 16 | 0.08 |
70≤x<80 | ____ | 0.20 |
80≤x<90 | 62 | ____ |
90≤x<100 | 72 | 0.36 |
(1)补全频数分布直方图;
![]()
(2)若将得分转化为等级,规定50≤x<60评为“D”,60≤x<70评为“C”,70≤x<90评为“B”,90≤x<100评为“A”.这次全区八年级参加竞赛的学生约有多少学生参赛成绩被评为“D”?