题目内容

试确定实数a的取值范围,使不等式组恰有两个整数解.
【答案】分析:先求出不等式组的解集,再根据x的两个整数解求出a的取值范围即可.
解答:解:由>0,两边同乘以6得3x+2(x+1)>0,解得x>-,(3分)
由x+(x+1)+a,两边同乘以3得3x+5a+4>4(x+1)+3a,解得x<2a,(6分)
∴原不等式组的解集为-<x<2a.
又∵原不等式组恰有2个整数解,即x=0,1;
则2a较大值在1(不含1)到2(含2)之间,
∴1<2a≤2,(9分)
∴0.5<a≤1.(10分)
点评:此题考查的是一元一次不等式的解法,得出x的整数解,再根据x的取值范围求出a的值即可.
求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网