题目内容
【题目】有一条抛物线,三位学生分别说出了它的一些性质:
甲说:对称轴是直线x=2;
乙说:与x轴的两个交点距离为6;
丙说:顶点与x轴的交点围成的三角形面积等于9,请你写出满足上述全部条件的一条抛物线的解析式:_______________________.
【答案】y=-
(x-2)2+3或y=
(x-2)2-3.
【解析】因为对称轴是直线x=2,与x轴的两个交点距离为6,所以与x轴的两个交点的坐标为(-1,0),(5,0);因为顶点与x轴的交点围成的三角形面积等于9,可得顶点的纵坐标为±3,得顶点坐标为(2,3)或(2,-3);所以利用顶点式求得抛物线的解析式即可.
解:根据题意得:抛物线与x轴的两个交点的坐标为(-1,0),(5,0),顶点坐标为(2,3)或(2,-3),
设函数解析式为y=a(x-2)2+3或y=a(x-2)2-3;
把点(5,0)代入y=a(x-2)2+3得a=-
;
把点(5,0)代入y=a(x-2)2-3得a=
;
∴满足上述全部条件的一条抛物线的解析式为y=-
(x-2)2+3或y=
(x-2)2-3.
“点睛”此题考查了学生的分析能力.解题的关键是理解题意,采用待定系数法求解析式,若给了顶点,注意采用顶点式简单.
练习册系列答案
相关题目
【题目】甲、乙、丙三位选手各10次射击成绩的平均数和方差,统计如下表:
选手 | 甲 | 乙 | 丙 |
平均数 | 9.3 | 9.3 | 9.3 |
方差 | 0.026 | 0.015 | 0.032 |
则射击成绩最稳定的选手是 . (填“甲”、“乙”、“丙”中的一个)