搜索
题目内容
已知关于
x
的方程
的解是
,则
k
的值为( ).
A.
B.
C. 1 D.
试题答案
相关练习册答案
D
练习册系列答案
初中学业考试指导丛书系列答案
新中考集锦全程复习训练系列答案
悦然好学生期末卷系列答案
名师导航小学毕业升学总复习系列答案
黄冈口算题卡系列答案
一通百通小学毕业升学模拟测试卷系列答案
真题集训小学期末全程测试卷系列答案
100分闯关考前冲刺全真模拟系列答案
启航学期总动员系列答案
全国历届中考真题分类一卷通系列答案
相关题目
已知关于x的方程(m+1)
x
m
2
+1
+(m-2)x-1=0,问:
(1)m取何值时,它是一元二次方程并猜测方程的解;
(2)m取何值时,它是一元一次方程?
已知关于x的方程(k-1)x
2
+(2k-3)x+k+1=0有两个不相等的实数根x
1
,x
2
.
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.
解:(1)根据题意,得
△=(2k-3)
2
-4(k-1)(k+1)
=4k
2
-12k+9-4k
2
+4
=-12k+13>0.
∴k<
.
∴当k<
时,方程有两个不相等的实数根.
(2)存在.如果方程的两个实数根互为相反数,则x
1
+x
2
=
=0,解得k=
.
检验知k=
是
=0的解.
所以当k=
时,方程的两实数根x
1
,x
2
互为相反数.
当你读了上面的解答过程后,请判断是否有错误?如果有,请指出错误之处,直接写出正确的答案.
已知关于x的方程(k-1)x
2
+(2k-3)x+k+1=0有两个不相等的实数根x
1
,x
2
.
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.
解:(1)根据题意,得
△=(2k-3)
2
-4(k-1)(k+1)
=4k
2
-12k+9-4k
2
+4
=-12k+13>0.
∴k<
.
∴当k<
时,方程有两个不相等的实数根.
(2)存在.如果方程的两个实数根互为相反数,则x
1
+x
2
=
=0,解得k=
.
检验知k=
是
=0的解.
所以当k=
时,方程的两实数根x
1
,x
2
互为相反数.
当你读了上面的解答过程后,请判断是否有错误?如果有,请指出错误之处,直接写出正确的答案.
已知关于x的方程(k-1)x
2
+(2k-3)x+k+1=0有两个不相等的实数根x
1
,x
2
.
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.
解:(1)根据题意,得
△=(2k-3)
2
-4(k-1)(k+1)
=4k
2
-12k+9-4k
2
+4
=-12k+13>0.
∴k<
.
∴当k<
时,方程有两个不相等的实数根.
(2)存在.如果方程的两个实数根互为相反数,则x
1
+x
2
=
=0,解得k=
.
检验知k=
是
=0的解.
所以当k=
时,方程的两实数根x
1
,x
2
互为相反数.
当你读了上面的解答过程后,请判断是否有错误?如果有,请指出错误之处,直接写出正确的答案.
已知关于x的方程(k-1)x
2
+(2k-3)x+k+1=0有两个不相等的实数根x
1
,x
2
.
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.
解:(1)根据题意,得
△=(2k-3)
2
-4(k-1)(k+1)
=4k
2
-12k+9-4k
2
+4
=-12k+13>0.
∴k<
.
∴当k<
时,方程有两个不相等的实数根.
(2)存在.如果方程的两个实数根互为相反数,则x
1
+x
2
=
=0,解得k=
.
检验知k=
是
=0的解.
所以当k=
时,方程的两实数根x
1
,x
2
互为相反数.
当你读了上面的解答过程后,请判断是否有错误?如果有,请指出错误之处,直接写出正确的答案.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案