题目内容

【题目】如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;
②EC平分∠DCH;
③线段BF的取值范围为3≤BF≤4;
④当点H与点A重合时,EF=2
以上结论中,你认为正确的有 . (填序号)

【答案】①③④
【解析】解:∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,

∴FH∥CG,EH∥CF,

∴四边形CFHE是平行四边形,

由翻折的性质得,CF=FH,

∴四边形CFHE是菱形,(故①正确);

∴∠BCH=∠ECH,

∴只有∠DCE=30°时EC平分∠DCH,(故②错误);

点H与点A重合时,设BF=x,则AF=FC=8﹣x,

在Rt△ABF中,AB2+BF2=AF2

即42+x2=(8﹣x)2

解得x=3,

点G与点D重合时,CF=CD=4,

∴BF=4,

∴线段BF的取值范围为3≤BF≤4,(故③正确);

过点F作FM⊥AD于M,

则ME=(8﹣3)﹣3=2,

由勾股定理得,

EF= = =2 ,(故④正确);

综上所述,结论正确的有①③④共3个,

故答案为①③④.

①先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CF=FH,然后根据邻边相等的平行四边形是菱形证明,判断出①正确;
②根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时EC平分∠DCH,判断出②错误;
③点H与点A重合时,设BF=x,表示出AF=FC=8-x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=CD,求出BF=4,然后写出BF的取值范围,判断出③正确;
④过点F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判断出④正确。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网