ÌâÄ¿ÄÚÈÝ
£¨2005•áéÖÝ£©Èçͼ£¬ÔÚ¾ØÐÎABCDÖУ¬AB=3£¬BC=2£¬µãAµÄ×ø±êΪ£¨1£¬0£©£¬ÒÔCDΪֱ¾¶£¬ÔÚ¾ØÐÎAB£¨1£©Çó¹ýA¡¢CÁ½µãÖ±ÏߵĽâÎöʽ£»
£¨2£©µ±µãNÔÚ°ëÔ²MÄÚʱ£¬ÇóaµÄȡֵ·¶Î§£»
£¨3£©¹ýµãA×÷¡ÑMµÄÇÐÏß½»BCÓÚµãF£¬EΪÇе㣬µ±ÒÔµãA¡¢F£¬BΪ¶¥µãµÄÈý½ÇÐÎÓëÒÔC¡¢N¡¢MΪ¶¥µãµÄÈý½ÇÐÎÏàËÆÊ±£¬ÇóµãNµÄ×ø±ê£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©¸ù¾Ý¾ØÐεÄÐÔÖʼ°Aµã×ø±ê¿ÉÇó³öCµã×ø±ê£¬ÔÙ¸ù¾ÝA¡¢CÁ½µãµÄ×ø±êÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³ö¹ýA¡¢CÁ½µãÖ±ÏߵĽâÎöʽ£®
£¨2£©¾ØÐÎABCDÖУ¬AB=3£¬BC=2£¬µãAµÄ×ø±êΪ£¨1£¬0£©£¬¿ÉÇó³öB¡¢D¡¢M¡¢EµãµÄ×ø±ê£¬¸ù¾ÝÅ×ÎïÏßÓë×ø±êÖá½»ÓÚA¡¢BÁ½µã¹Ê¿ÉÉè³öÅ×ÎïÏߵĽ»µãʽ£¬¸ù¾Ý½»µãʽ¿ÉÇó³öNµã×ø±ê£¬ÓÉÅ×ÎïÏß¡¢°ëÔ²µÄÖá¶Ô³Æ¿ÉÖª£¬Å×ÎïÏߵĶ¥µãÔÚ¹ýµãMÇÒÓëCD´¹Ö±µÄÖ±ÏßÉÏ£¬ÓÖµãNÔÚ°ëÔ²ÄÚ£¬¼´¿ÉÇó³öaµÄȡֵ·¶Î§£®
£¨3£©¸ù¾ÝÇÐÏßµÄÐÔÖʶ¨Àí¡¢¾ØÐεı߳¤¼°¹´¹É¶¨Àí¿ÉÇó³ö¡÷¸÷±ßµÄ³¤£¬ÒòΪÔÚ¡÷ABFÓë¡÷CMN¾ùΪֱ½ÇÈý½ÇÐΣ¬¹ÊÓ¦·ÖÁ½ÖÖÇé¿öÌÖÂÛ¼´¡÷ABF¡×¡÷CMN£¬¡÷ABF¡×¡÷NMC£¬Í¬Ê±ÔÚÌÖÂÛʱ»¹Òª¿¼Âǵ½NÔÚCDµÄÏ·½ÓëÉÏ·½µÄÇé¿ö£®
½â´ð£º½â£º£¨1£©ÒòΪÔÚ¾ØÐÎABCDÖУ¬AB=3£¬BC=2£¬µãAµÄ×ø±êΪ£¨1£¬0£©£¬
ËùÒÔB£¨4£¬0£©£¬C£¨4£¬2£©£¬
Éè¹ýA£¬CÁ½µãµÄÖ±Ïß½âÎöʽΪy=kx+b£¬
°ÑA£¬CÁ½µã´úÈëµÃ
£¬
½âµÃ
£¬
¹Ê¹ýµãA¡¢CµÄÖ±ÏߵĽâÎöʽΪy=
x-
£®
£¨2£©ÓÉÅ×ÎïÏß¹ýA£¬BÁ½µã£¬¿ÉÉèÅ×ÎïÏߵĽâÎöʽΪy=a£¨x-1£©£¨x-4£©£¬
ÕûÀíµÃ£¬y=ax2-5ax+4a£®
¡à¶¥µãNµÄ×ø±êΪ£¨
£¬-
£©£®
ÓÉÅ×ÎïÏß¡¢°ëÔ²µÄÖá¶Ô³Æ¿ÉÖª£¬Å×ÎïÏߵĶ¥µãÔÚ¹ýµãMÇÒÓëCD´¹Ö±µÄÖ±ÏßÉÏ£¬ÓÖµãNÔÚ°ëÔ²ÄÚ£¬
£¼-
£¼2£¬
½âÕâ¸ö²»µÈʽ£¬µÃ-
£¼a£¼-
£®
£¨3£©ÉèEF=x£¬ÔòCF=x£¬BF=2-x£¬AF=2+x£¬AB=3£¬
ÔÚRt¡÷ABFÖУ¬Óɹ´¹É¶¨ÀíAB2+BF2=AF2£¬
µÃx=
£¬BF=
£¬
¢ÙÓÉ¡÷ABF¡×¡÷CMNµÃ£¬
=
£¬¼´MN=
=
£®
µ±µãNÔÚCDµÄÏ·½Ê±£¬ÓÉ-
=2-
=
£¬ÇóµÃN1£¨
£¬
£©£®
µ±µãNÔÚCDµÄÉÏ·½Ê±£¬ÓÉ-
=2+
=
£¬ÇóµÃN 2£¨
£¬
£©£®
¢ÚÓÉ¡÷ABF¡×¡÷NMCµÃ£¬
=
¼´MN=
=
£®
µ±µãNÔÚCDµÄÏ·½Ê±£¬ÓÉ-
=2-
=-
£¬ÇóµÃN3£¨
£¬
£©£®
µ±µãNÔÚCDµÄÉÏ·½Ê±£¬ÓÉ-
=2+
=
£¬ÇóµÃN4£¨
£¬
£©£®
µãÆÀ£º´ËÌâ±È½Ï¸´ÔÓ£¬×ÛºÏÐÔ½ÏÇ¿£¬×ۺϿ¼²éÁËÔ²¡¢Ò»´Îº¯Êý¡¢¶þ´Îº¯ÊýµÄÐÔÖÊ£¬ÊÇÒ»µÀÄѶȽϴóµÄÌâÄ¿£®
£¨2£©¾ØÐÎABCDÖУ¬AB=3£¬BC=2£¬µãAµÄ×ø±êΪ£¨1£¬0£©£¬¿ÉÇó³öB¡¢D¡¢M¡¢EµãµÄ×ø±ê£¬¸ù¾ÝÅ×ÎïÏßÓë×ø±êÖá½»ÓÚA¡¢BÁ½µã¹Ê¿ÉÉè³öÅ×ÎïÏߵĽ»µãʽ£¬¸ù¾Ý½»µãʽ¿ÉÇó³öNµã×ø±ê£¬ÓÉÅ×ÎïÏß¡¢°ëÔ²µÄÖá¶Ô³Æ¿ÉÖª£¬Å×ÎïÏߵĶ¥µãÔÚ¹ýµãMÇÒÓëCD´¹Ö±µÄÖ±ÏßÉÏ£¬ÓÖµãNÔÚ°ëÔ²ÄÚ£¬¼´¿ÉÇó³öaµÄȡֵ·¶Î§£®
£¨3£©¸ù¾ÝÇÐÏßµÄÐÔÖʶ¨Àí¡¢¾ØÐεı߳¤¼°¹´¹É¶¨Àí¿ÉÇó³ö¡÷¸÷±ßµÄ³¤£¬ÒòΪÔÚ¡÷ABFÓë¡÷CMN¾ùΪֱ½ÇÈý½ÇÐΣ¬¹ÊÓ¦·ÖÁ½ÖÖÇé¿öÌÖÂÛ¼´¡÷ABF¡×¡÷CMN£¬¡÷ABF¡×¡÷NMC£¬Í¬Ê±ÔÚÌÖÂÛʱ»¹Òª¿¼Âǵ½NÔÚCDµÄÏ·½ÓëÉÏ·½µÄÇé¿ö£®
½â´ð£º½â£º£¨1£©ÒòΪÔÚ¾ØÐÎABCDÖУ¬AB=3£¬BC=2£¬µãAµÄ×ø±êΪ£¨1£¬0£©£¬
ËùÒÔB£¨4£¬0£©£¬C£¨4£¬2£©£¬
Éè¹ýA£¬CÁ½µãµÄÖ±Ïß½âÎöʽΪy=kx+b£¬
°ÑA£¬CÁ½µã´úÈëµÃ
½âµÃ
¹Ê¹ýµãA¡¢CµÄÖ±ÏߵĽâÎöʽΪy=
£¨2£©ÓÉÅ×ÎïÏß¹ýA£¬BÁ½µã£¬¿ÉÉèÅ×ÎïÏߵĽâÎöʽΪy=a£¨x-1£©£¨x-4£©£¬
ÕûÀíµÃ£¬y=ax2-5ax+4a£®
¡à¶¥µãNµÄ×ø±êΪ£¨
ÓÉÅ×ÎïÏß¡¢°ëÔ²µÄÖá¶Ô³Æ¿ÉÖª£¬Å×ÎïÏߵĶ¥µãÔÚ¹ýµãMÇÒÓëCD´¹Ö±µÄÖ±ÏßÉÏ£¬ÓÖµãNÔÚ°ëÔ²ÄÚ£¬
½âÕâ¸ö²»µÈʽ£¬µÃ-
£¨3£©ÉèEF=x£¬ÔòCF=x£¬BF=2-x£¬AF=2+x£¬AB=3£¬
ÔÚRt¡÷ABFÖУ¬Óɹ´¹É¶¨ÀíAB2+BF2=AF2£¬
µÃx=
¢ÙÓÉ¡÷ABF¡×¡÷CMNµÃ£¬
µ±µãNÔÚCDµÄÏ·½Ê±£¬ÓÉ-
µ±µãNÔÚCDµÄÉÏ·½Ê±£¬ÓÉ-
¢ÚÓÉ¡÷ABF¡×¡÷NMCµÃ£¬
µ±µãNÔÚCDµÄÏ·½Ê±£¬ÓÉ-
µ±µãNÔÚCDµÄÉÏ·½Ê±£¬ÓÉ-
µãÆÀ£º´ËÌâ±È½Ï¸´ÔÓ£¬×ÛºÏÐÔ½ÏÇ¿£¬×ۺϿ¼²éÁËÔ²¡¢Ò»´Îº¯Êý¡¢¶þ´Îº¯ÊýµÄÐÔÖÊ£¬ÊÇÒ»µÀÄѶȽϴóµÄÌâÄ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿