题目内容
已知代数式:A=2x2+3xy+2y-1,B=x2-xy+x-
;
(1)当x-y=-1,xy=1时,求A-2B的值;
(2)若A-2B的值与x的取值无关,求y的值.
| 1 | 2 |
(1)当x-y=-1,xy=1时,求A-2B的值;
(2)若A-2B的值与x的取值无关,求y的值.
分析:(1)把A、B的值代入,再去括号合并同类项,最后代入求出即可.
(2)合并后得出5y-2=0,求出即可.
(2)合并后得出5y-2=0,求出即可.
解答:解:(1)∵A=2x2+3xy+2y-1,B=x2-xy+x-
,x-y=-1,xy=1,
∴A-2B=(2x2+3xy+2y-1)-2(x2-xy+x-
)
=2x2+3xy+2y-1-2x2+2xy-2x+1
=5xy+2y-2x
=5xy+2(y-x)
=5+2=7.
(2)A-2B=5xy+2y-2x=(5y-2)x+2y,
∵A-2B的取值与x无关,
∴5y-2=0,
y=
.
| 1 |
| 2 |
∴A-2B=(2x2+3xy+2y-1)-2(x2-xy+x-
| 1 |
| 2 |
=2x2+3xy+2y-1-2x2+2xy-2x+1
=5xy+2y-2x
=5xy+2(y-x)
=5+2=7.
(2)A-2B=5xy+2y-2x=(5y-2)x+2y,
∵A-2B的取值与x无关,
∴5y-2=0,
y=
| 2 |
| 5 |
点评:本题考查了整式的混合运算的应用,主要考查学生的化简和计算能力.
练习册系列答案
相关题目