题目内容

如图,正方形ABCD的边长为3,将正方形ABCD绕点A顺时针旋转角度α(0°<α<90°),得到正方形AEFG,FE交线段DC于点Q,FE的延长线交线段BC于点P,连结AP、AQ.
(1)求证:△ADQ≌△AEQ;
(2)求证:PQ=DQ+PB;
(3)当∠1=∠2时,求PQ的长.

(1)证明:∵ABCD是正方形,
∴∠G=∠AEF=90°,AD=AE,
∵在Rt△ADQ和Rt△AEQ中

∴△ADQ≌△AEQ(HL);

(2)证明:与证△ADQ≌△AEQ类似,可证得:△AEP≌△ABP,
∴PB=PE,QD=QE,
∴PQ=QE+PE=DQ+PB;

(3)解:当∠1=∠2时,
∵∠D=∠C=90°,
∴Rt△ADQ∽Rt△PCQ,
∴∠AQD=∠PQC,
∵△ADQ≌△AEQ
∴∠AQD=∠AQE,
∴∠AQD=∠PQC=∠AQE,且∠AQD+∠AQE+∠PQC=180°,
∴∠AQD=60°,
∴∠1=30°
∴Rt△ADQ中,AD=3,DQ=
∴QC=3-
∵∠C=90°,∠PQC=60°,
∴∠2=30°,
∴PQ=2QC=6-2
分析:(1)根据正方形性质得出∠G=∠AEF=90°,AD=AE,根据HL证出粮三角形全等即可;
(2)根据全等求出DQ=QE,同理BP=PE,即可得出答案;
(3)求出Rt△ADQ∽Rt△PCQ,推出∠AQD=∠PQC=∠AQP,求出三角为60°,求出∠1和∠2度数,求出QD、CQ,即可求出答案.
点评:本题考查了正方形性质,全等三角形的性质和判定,相似三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,主要考查学生的推理能力,题目综合性比较强,难度偏大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网