题目内容
已知a、b互为相反数,c、d互为倒数,m的倒数等于它本身,则
+(a+b)m-|m|的值是多少?
| cd |
| m |
∵a、b互为相反数,
∴a+b=0,
∵c、d互为倒数,
∴cd=1,
∵m的倒数等于它本身,
∴m=±1,
①当a+b=0;cd=1;m=1时,
∴
+(a+b)m-|m|=
+0×1-|1|=1-1=0;
②当a+b=0;cd=1;m=-1时,
原式=
+0×(-1)-|-1|=-1-1=-2.
故原式的值有两个0或-2.
∴a+b=0,
∵c、d互为倒数,
∴cd=1,
∵m的倒数等于它本身,
∴m=±1,
①当a+b=0;cd=1;m=1时,
∴
| cd |
| m |
| 1 |
| 1 |
②当a+b=0;cd=1;m=-1时,
原式=
| 1 |
| -1 |
故原式的值有两个0或-2.
练习册系列答案
相关题目