题目内容
如图,在平行四边形ABCD中,过AC中点0作直线,分别交AD、BC于点E、F.
求证:△AOE≌△COF.
![]()
考点:
平行四边形的性质;全等三角形的判定.
专题:
证明题.
分析:
据平行四边形的性质可知:OA=OC,∠AEO=∠OFC,∠EAO=∠OCF,所以△AOE≌△COF.
解答:
证明:∵AD∥BC,
∴∠EAO=∠FCO.
又∵∠AOE=∠COF,OA=OC,
在△AOE和△COF中,
,
∴△AOE≌△COF.
点评:
此题主要考查了全等三角形的性质与判定、平行四边形的性质,首先利用平行四边形的性质构造全等条件,然后利用全等三角形的性质解决问题.
练习册系列答案
相关题目
| 2 |
| 3 |
| 5 |
| A、AC⊥BD |
| B、四边形ABCD是菱形 |
| C、△ABO≌△CBO |
| D、AC=BD |