题目内容
如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连结AG,点E、F分别在AG上,连接BE、DF,∠1=∠2 , ∠3=∠4.
(1)证明:△ABE≌△DAF;
(2)若∠AGB=30°,求EF的长.
解:(1)∵四边形ABCD是正方形
∴AB=AD
在△ABE和△DAF中
![]()
∴△ABE≌△DAF
(2)∵四边形ABCD是正方形
∴∠1+∠4=900
∵∠3=∠4
∴∠1+∠3=900
∴∠AFD=900
在正方形ABCD中, AD∥BC
∴∠1=∠AGB=300
在Rt△ADF中,∠AFD=900 AD=2
∴AF=
DF =1
由(1)得△ABE≌△ADF
∴AE=DF=1
∴EF=AF-AE=
练习册系列答案
相关题目