题目内容

如图所示,在△ABC中,∠C=90°,AB=16cm,BC的垂直平分线交AB于点D,则点C与点D的距离是
8
8
 cm.
分析:首先连接CD,由BC的垂直平分线交AB于点D,根据线段垂直平分线的性质,即可求得CD=BD,又由∠C=90°,根据等角的余角相等,即可求得∠A=∠ACD,则可得AD=CD,继而可求得CD=
1
2
AB.
解答:解:连接CD,
∵BC的垂直平分线交AB于点D,
∴CD=BD,
∴∠DCB=∠B,
∵∠C=90°,
∴∠A+∠B=90°,∠ACD+∠DCB=90°,
∴∠A=∠ACD,
∴AD=CD,
∴CD=AD=BD=
1
2
AB=
1
2
×16=8(cm).
故答案为:8.
点评:此题考查了线段垂直平分线的性质、等腰三角形的判定与性质以及直角三角形的性质.此题难度不大,解题的关键是准确作出辅助线,证得CD=AD=BD.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网