题目内容

如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B

(1)求证:△ADF∽△DEC;

(2)若AB=8,AD=6,AF=4,求AE的长.

(1)证明见解析;(2)6.

【解析】

试题分析:(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC;

(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在Rt△ADE中,利用勾股定理求出线段AE的长度.

试题解析:(1)证明:∵四边形ABCD是平行四变形,∴AB∥CD,AD∥BC,

∴∠C+∠B=180°,∠ADF=∠DEC.

∵∠AFD+∠AFE=180°,∠AFE=∠B,

∴∠AFD=∠C.

在△ADF与△DEC中,

∴△ADF∽△DEC.

(2)【解析】
∵四边形ABCD是平行四边形,∴CD=AB=8.

由(1)知△ADF∽△DEC,

,∴DE==12.

在Rt△ADE中,由勾股定理得:AE=

考点:1.相似三角形的判定与性质;2.勾股定理;3.平行四边形的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网