题目内容
如图,AD∥BE∥CF,直线l1,l2这与三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为( )
A. 4 B. 5 C. 6 D. 8
抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:
(1)本次抽样调查共抽取了多少名学生?
(2)求测试结果为C等级的学生数,并补全条形图;
(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?
(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.
【答案】(1)50;(2)16;(3)56(4)见解析
【解析】试题分析:
(1)根据统计图中的信息可知,获得A等的有10人,占抽查总数的20%,由此即可计算出抽查学生的总数;
(2)由(1)中计算结果结合统计图中已知的A、B、D三个等级的人数即可求得C等级的人数,并由此补全条形统计图;
(3)由(1)中求得的被抽查学生的总数及获得D等级的有4人可计算出获得D等级的人数所占的百分比,即可求得800人中可能获得D等级的人数;
(4)设两名男生为A1、A2,两名女生为B1、B2,画出树形图分析即可求得所求概率;
试题解析:
(1)10÷20%=50(名)
答:本次抽样调查共抽取了50名学生.
(2)50-10-20-4=16(名)
答:测试结果为C等级的学生有16名.
图形统计图补充完整如下图所示:
(3)700×=56(名)
答:估计该中学八年级学生中体能测试结果为D等级的学生有56名.
(4)画树状图法:设体能为A等级的两名男生分别为,体能为A等级的两名女生分别为,,画树状图如下:
由树状图可知,共有12 种结果,每种结果出现的可能性相同,而抽取的两人都是男生的结果有两种:(),(,), ∴P(抽取的两人是男生)=.
【题型】解答题【结束】20
如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BO﹣OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)求直线AB的解析式;
(2)在点P从O向A运动的过程中,求△APQ的面积S与t之间的函数关系式(不必写出t的取值范围);
(3)在点E从B向O运动的过程中,完成下面问题:
①四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;
②当DE经过点O时,请你直接写出t的值.
5月14﹣15日“一带一路”论坛峰会在北京隆重召开,促进了我国与世界各国的互联互通互惠,“一带一路”地区覆盖总人数约为44亿人,44亿这个数用科学记数法表示为( )
A. 4.4×108 B. 4.4×109 C. 4×109 D. 44×108
如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°,若旗杆与教学楼的距离为9m,则旗杆AB的高度是______m(结果保留根号).
如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是( )
A. B. C. D.
定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在该抛物线上(点P与A、B两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.
(1)直接写出抛物线y=–x2+1的勾股点的坐标;
(2)如图2,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,)是抛物线C的勾股点,求抛物线C的函数表达式;
(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP的Q点(异于点P)的坐标.
已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A的横坐标是2,则矩形ABCD的面积为________.
的相反数是( )
A. B. ﹣ C. 2 D. ﹣2
若不等式组无解,则m的取值范围是_____.