题目内容
【题目】如图,在
中,点
、
分别是
、
的中点,
平分
,交
于点
,
交
于点
.
![]()
(1)求证:四边形
是菱形;
(2)若
,
,求四边形
的周长.
【答案】(1)见解析;(2)8.
【解析】
(1)由三角形中位线定理可得BC=2DE,DE∥BC,且FG∥AB,可证四边形BDFG是平行四边形,由角平分线的性质和平行线的性质可得DF=DB,即可得四边形BDFG是菱形;
(2)由菱形的性质可得DF=BG=GF=BD,由BC=2DE,可求BG的长,即可求四边形BDFG的周长.
证明:(1)∵点D、E分别是AB、AC的中点,
∴BC=2DE,DE∥BC,且FG∥AB,
∴四边形BDFG是平行四边形,
∵BF平分∠ABC,
∴∠DBF=∠GBF,
∵DE∥BC,
∴∠GBF=∠DFB,
∴∠DFB=∠DBF,
∴DF=DB,
∴四边形BDFG是菱形;
![]()
(2)∵四边形BDFG是菱形;
∴DF=BG=GF=BD
∵BC=2DE
∴BG+4=2(BG+1)
∴BG=2,
∴四边形BDFG的周长=4×2=8
练习册系列答案
相关题目