题目内容

(1)若方程x2+2px-q=0(p,q是实数)没有实数根,求证:p+q<
1
4

(2)试写出上述命题的逆命题;
(3)判断(2)中的逆命题是否正确.若正确请加以证明,若不正确,请举一反例说明.
(1)证明:∵方程x2+2px-q=0(p,q是实数)没有实数根,
∴y=x2+2px-q的函数值恒大于0,
所以当x=-
1
2
时,y=x2+2px-q>0,即
1
4
-p-q>0,
所以p+q<
1
4

(2)(1)的逆命题为:若p+q<
1
4
(p,q是实数),求证:方程x2+2px-q=0没有实数根.
(3)(2)中的逆命题不正确.
如:当p=q=0,满足p+q<
1
4
,但原方程为x2=0有两个相等的实数根,所以(2)中的逆命题不正确.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网