题目内容
(6分)如图∠ABC=38°,∠ACB=100°,AD平分∠BAC,AE是BC边上的高,求∠DAE的度数.
![]()
31°
【解析】
试题分析:根据三角形内角和求出∠BAC的度数,根据角平分线求出∠BAD的度数,根据外角的性质求出∠ADE的度数,最后根据三角形内角和求出∠DAE的度数.
试题解析:∵∠ABC=38°,∠ACB=100°(己知) ∴∠BAC=180°―38°―100°=42°(三角形内角和180°)
又∵AD平分∠BAC(己知) ∴∠BAD=21°
∴∠ADE=∠ABC+∠BAD=59°(三角形的外角性质) 又∵AE是BC边上的高, 即∠E=90°
∴∠DAE=90°―59°=31°
考点:三角形内角和定理以及外角的性质.
练习册系列答案
相关题目
已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.
![]()
水银柱的长度x(cm) | 4.2 | … | 8.2 | 9.8 |
体温计的读数y(℃) | 35.0 | … | 40.0 | 42.0 |
(1)求y关于x的函数关系式;
(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.