题目内容
(1)化简a+1+
| ||
a+1-
|
a+1-
| ||
a+1+
|
(2)设x,y是实数,且x2+y2-2x+4y+5=0,求
| 1 | ||||||||
|
分析:(1)本题可对方程进行通分,运用平方差公式进行化简;
(2)本题可将5化为4+1,然后将方程配成两个平方数相加,根据非负数的性质“两个非负数相加和为0,这两个非负数的值都为0”解出x、y的值,再代入代数式中即可.
(2)本题可将5化为4+1,然后将方程配成两个平方数相加,根据非负数的性质“两个非负数相加和为0,这两个非负数的值都为0”解出x、y的值,再代入代数式中即可.
解答:(1)原式=
=
=
=
=
=2a;
(2)解:x2+y2-2x+4y+5=0
(x-1)2+(y+2)2=0
x-1=0,y+2=0
x=1,y=-2
=
=
=
+
.
(a+1+
| ||||
(a+1-
|
=
[(a+1)2+2(a+1)
| ||||
| (a+1)2-(a2-1) |
=
| 2(a+1)2+2(a2-1) |
| a2+2a+1-a2+1 |
=
| 2a2+2a |
| a+1 |
=
| 2a(a+1) |
| a+1 |
=2a;
(2)解:x2+y2-2x+4y+5=0
(x-1)2+(y+2)2=0
x-1=0,y+2=0
x=1,y=-2
| 1 | ||||||||
|
=
| 1 | ||||||
|
=
| 1 | ||||
|
=
| 3 |
| 2 |
点评:本题考查了非负数的性质和分式的运算,两个非负数相加,和为0,这两个非负数的值都为0.
练习册系列答案
相关题目