题目内容
如图,在△ABC中,∠BAD=∠DAC,BE⊥AC于E,交AD于F.试说明∠AFE=
(∠ABC+∠C ).
证明:∵∠BAD=∠DAC,
∴∠DAC=
∠BAC,
∵∠BAC+∠ABC+∠C=180°,
∴∠BAC=180°-(∠ABC+∠C),
∴∠DAC=
[180°-(∠ABC+∠C)],
=90°-
(∠ABC+∠C),
∵BE⊥AC,
∴∠AEB=90°,
∴∠AFE+∠DAC=90°,
∴∠AFE=90°-∠DAC=90°-90°+
(∠ABC+∠C),
=
(∠ABC+∠C).
分析:根据三角形的内角和定理可得出∠DAC=90°-
(∠ABC+∠C),再根据垂直的定义即可证明∠AFE=
(∠ABC+∠C ).
点评:本题主要考查了三角形的内角和为180°以及垂直的定义,难度适中.
∴∠DAC=
∵∠BAC+∠ABC+∠C=180°,
∴∠BAC=180°-(∠ABC+∠C),
∴∠DAC=
=90°-
∵BE⊥AC,
∴∠AEB=90°,
∴∠AFE+∠DAC=90°,
∴∠AFE=90°-∠DAC=90°-90°+
=
分析:根据三角形的内角和定理可得出∠DAC=90°-
点评:本题主要考查了三角形的内角和为180°以及垂直的定义,难度适中.
练习册系列答案
相关题目