题目内容
【题目】如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函双y=
(m≠0)的阳象交于点c(n,3),与x轴、y轴分别交于点A、B,过点C作CM⊥x轴,垂足为M,若tan∠CAM=
,OA=2. ![]()
(1)求反比例函数和一次函数的解析式;
(2)点D是反比例函数图象在第三象限部分上的一点,且到x轴的距离是3,连接AD、BD,求△ABD的面积.
【答案】
(1)解:∵在直角△ACM中,tan∠CAM=
=
,CM=3,
∴AM=4,
∴OM=AM﹣OA=4﹣2=2.
∴n=2,
则C的坐标是(2,3).
把(2,3)代入y=
得m=6.
则反比例函数的解析式是y=
;
根据题意得
,
解得
,
则一次函数的解析式是y=
x+ ![]()
(2)解:在y=
中令y=﹣3,则x=﹣2.
则D的坐标是(﹣2,﹣3).
AD=3,
则S△ABD=
×3×2=3
![]()
【解析】(1)利用三角函数求得AM的长,则C的坐标即可求得,利用待定系数法求得反比例函数解析式,然后利用待定系数法求得一次函数的解析式;(2)首先求得D的坐标,然后利用三角形的面积公式求解.
【考点精析】通过灵活运用解直角三角形,掌握解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)即可以解答此题.
【题目】某企业招聘员工,要求所要应聘者都要经过笔试与面试两种考核,且按考核总成绩从高到低进行录取,如果考核总成绩相同时,则优先录取面试成绩高分者.下面是招聘考和总成绩的计算说明:
笔试总成绩=(笔试总成绩+加分)÷2
考和总成绩=笔试总成绩+面试总成绩
现有甲、乙两名应聘者,他们的成绩情况如下:
应聘者 | 成绩 | ||
笔试成绩 | 加分 | 面试成绩 | |
甲 | 117 | 3 | 85.6 |
乙 | 121 | 0 | 85.1 |
(1)甲、乙两人面试的平均成绩为 ;
(2)甲应聘者的考核总成绩为 ;
(3)根据上表的数据,若只应聘1人,则应录取 .
【题目】青少年“心理健康”问题越来越引起社会的关注,某中学为了了解学校600名学生的心理健康状况,举行了一次“心理健康”知识测试,并随即抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了下面未完成的频率分布表和频率分布直方图.请回答下列问题:
分组 | 频数 | 频率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 14 | 0.28 |
70.5~80.5 | 16 |
|
80.5~90.5 |
|
|
90.5~100.5 | 10 | 0.20 |
合计 |
| 1.00 |
![]()
(1)填写频率分布表中的空格,并补全频率分布直方图;
(2)若成绩在70分以上(不含70分)为心理健康状况良好,同时,若心理健康状况良好的人数占总人数的70%以上,就表示该校学生的心理健康状况正常,否则就需要加强心里辅导.请根据上述数据分析该校学生是否需要加强心里辅导,并说明理由.
【题目】某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:
销售量n(件) | n=50﹣x |
销售单价m(元/件) | 当1≤x≤20时,m=20+ |
当21≤x≤30时,m=10+ |
(1)请计算第几天该商品单价为25元/件?
(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;
(3)这30天中第几天获得的利润最大?最大利润是多少?