题目内容
| AP |
| AM |
| BP |
| BN |
| 3 |
| 7 |
| BA |
| MN |
考点:相似三角形的判定与性质,比例的性质
专题:
分析:先由
=
=
,根据比例的性质可得
=
=
,又∠APB=∠MPN,根据两边对应成比例且夹角相等的两三角形相似可得△APB∽△MPN,由相似三角形对应边成比例得到
=
=
.
| AP |
| AM |
| BP |
| BN |
| 3 |
| 7 |
| AP |
| MP |
| BP |
| NP |
| 3 |
| 4 |
| BA |
| MN |
| AP |
| MP |
| 3 |
| 4 |
解答:解:∵
=
=
,
∴
=
=
,
∴1+
=1+
=
,
∴
=
=
,
∴
=
=
,
又∵∠APB=∠MPN,
∴△APB∽△MPN,
∴
=
=
.
故答案为
.
| AP |
| AM |
| BP |
| BN |
| 3 |
| 7 |
∴
| AM |
| AP |
| BN |
| BP |
| 7 |
| 3 |
∴1+
| MP |
| AP |
| NP |
| BP |
| 7 |
| 3 |
∴
| MP |
| AP |
| NP |
| BP |
| 4 |
| 3 |
∴
| AP |
| MP |
| BP |
| NP |
| 3 |
| 4 |
又∵∠APB=∠MPN,
∴△APB∽△MPN,
∴
| BA |
| MN |
| AP |
| MP |
| 3 |
| 4 |
故答案为
| 3 |
| 4 |
点评:本题考查了相似三角形的判定与性质,比例的性质,由
=
=
得出
=
=
是解题的关键.
| AP |
| AM |
| BP |
| BN |
| 3 |
| 7 |
| AP |
| MP |
| BP |
| NP |
| 3 |
| 4 |
练习册系列答案
相关题目
若x2+3x+k=(x+5)(x-2),则k等于( )
| A、-2 | B、5 | C、10 | D、-10 |
下列各组中,是同类项的是( )
| A、-x2y与3yx2 |
| B、m3与3m |
| C、a2与b2 |
| D、x与2 |