题目内容
【题目】将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1。在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换。若骰子的初始位置为图1所示的状态,那么按上述规则连续完成14次变换后,骰子朝上一面的点数是_____________________。
![]()
【答案】5.
【解析】
先向右翻滚,然后再逆时针旋转叫做一次变换,那么连续3次变换是一个循环.本题先要找出3次变换是一个循环,然后再求10被3整除后余数是1,从而确定第1次变换的第1步变换.
根据题意可知连续3次变换是一循环,
所以10÷3=3…1.所以是第1次变换后的图形,即按上述规则连续完成10次变换后,骰子朝上一面的点数是5.
故答案为:5.
【题目】某中学八年级的篮球队有
名队员.在罚篮投球训练中,这
名队员各投篮
次的进球情况如下表:
进球数 |
|
|
|
|
|
|
人数 |
|
|
|
|
|
|
针对这次训练,请解答下列问题:
这
名队员进球数的平均数是________,中位数是________;
求这支球队罚篮命中率.罚篮命中率
(进球数
投篮次数)
________;
若队员小亮的罚篮命中率为
,请你分析小亮在这支球队中的罚篮水平.
【题目】在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的限距点的定义如下:若P′为直线PC与⊙C的一个交点,满足r≤PP′≤2r,则称P′为点P关于⊙C的限距点,如图为点P及其关于⊙C的限距点P′的示意图. ![]()
(1)当⊙O的半径为1时.
①分别判断点M(3,4),N(
,0),T(1,
)关于⊙O的限距点是否存在?若存在,求其坐标;
②点D的坐标为(2,0),DE,DF分别切⊙O于点E,点F,点P在△DEF的边上.若点P关于⊙O的限距点P′存在,求点P′的横坐标的取值范围;
(2)保持(1)中D,E,F三点不变,点P在△DEF的边上沿E→F→D→E的方向运动,⊙C的圆心C的坐标为(1,0),半径为r,请从下面两个问题中任选一个作答.
问题1 | 问题2 |
若点P关于⊙C的限距点P′存在,且P′随点P的运动所形成的路径长为πr,则r的最小值为 | 若点P关于⊙C的限距点P′不存在,则r的取值范围为 |