题目内容
(1)15-(-30)
(2)
(3)+[9-(-6)×2]÷(-3)
(4)
已知(n+q≠0),则= 。
如图,已知抛物线y=ax2+bx+c(a≠0)交x轴于A(﹣1,0),B(5,0)两点,与y轴交于点C(0,2)
(1)求抛物线的解析式;
(2)若点M为抛物线的顶点,连接BC、CM、BM,求△BCM的面积;
(3)连接AC,在x轴上是否存在点P使△ACP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
如图,在Rt△ABC中,∠BAC=90°,AB=AC,将△ABP绕点A逆时针旋转后,能与△重合,如果AP=3,那么的长等于( ).
A. B. C. D.
一个小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程为负数,爬行的路程依次为(单位:厘米):+5,-3,+10,-8,-6,+12,-10.
(1)小虫最后是否能回到出发点O?
(2)小虫离开出发点O最远时是多少厘米?(直接写出结果即可.)
(3)在爬行过程中,如果每爬1厘米奖励两粒芝麻,则小虫共可得多少粒芝麻?
-43=;其底数为 ;指数为。
某药品原价为每盒100元,由于连续两次降价,每次降价20%,则两次降价后价格是每盒( )元.
A.64 B.60 C.36 D.80
已知:a+=5,求:
将式子3-5-7写成和的形式,正确的是( )
A.3+5+7 B.-3+(-5)+(-7)
C.3-(+5)-(+7) D.3+(-5)+(-7)