题目内容
已知:如图,AB∥CD,AE⊥BD于E,CF⊥BD于F,BF=DE.
求证:△ABE≌△CDF.
证明:∵AB∥CD,∴∠1=
∠2
∠2
.(两直线平行,内错角相等 )∵AE⊥BD,CF⊥BD,
∴∠AEB=
∠CFD
∠CFD
=90°.∵BF=DE,∴BE=
DF
DF
.在△ABE和△CDF中,
∴△ABE≌△CDF
(ASA)
(ASA)
.分析:根据AB∥CD,可得∠1=∠2,根据AE⊥BD于E,CF⊥BD于F,可得∠AEB=∠CFD=90°,然后根据BF=DE,可得BE=DF,利用ASA可证明△ABE≌△CDF.
解答:证明::∵AB∥CD,
∴∠1=∠2(两直线平行,内错角相等),
∵AE⊥BD,CF⊥BD,
∴∠AEB=∠CFD=90°,
∵BF=DE,
∴BE=DF,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(ASA).
故答案为:∠2;∠CFD;DF;∠2,DF,∠CFD;(ASA).
∴∠1=∠2(两直线平行,内错角相等),
∵AE⊥BD,CF⊥BD,
∴∠AEB=∠CFD=90°,
∵BF=DE,
∴BE=DF,
在△ABE和△CDF中,
|
∴△ABE≌△CDF(ASA).
故答案为:∠2;∠CFD;DF;∠2,DF,∠CFD;(ASA).
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关题目