题目内容
如图,在⊙O中,弦AB和CD相交于点P,若AP=4,PB=6,CP=3,则PD的长为 .
【答案】分析:根据相交弦定理“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”进行计算.
解答:解:由相交弦定理得:PA•PB=PC•PD,∴DP=
=
=8.
点评:本题主要考查相交弦定理:圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等.
解答:解:由相交弦定理得:PA•PB=PC•PD,∴DP=
点评:本题主要考查相交弦定理:圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等.
练习册系列答案
相关题目