题目内容
已知:如图,在?ABCD中,点F在AB的延长线上,且BF=AB,连接FD,交BC于点E.
(1)说明△DCE≌△FBE的理由;
(2)若EC=3,求AD的长.
某商店第一次用300元购进笔记本若干,第二次又用300元购进该款笔记本,但这次每本的进价是第一次进价的倍,购进数量比第一次少了25本.
(1)求第一次每本笔记本的进价是多少元?
(2)若要求这两次购进的笔记本按同一价格全部销售完毕后获利不低于450元,问每本笔记本的售价至少是多少元?
已知二次函数y=x2+bx﹣3(b是常数)
(1)若抛物线经过点A(﹣1,0),求该抛物线的解析式和顶点坐标;
(2)P(m,n)为抛物线上的一个动点,P关于原点的对称点为P′,当点P′落在该抛物线上时,求m的值;
(3)在﹣1≤x≤2范围内,二次函数有最小值是﹣6,求b的值.
两会期间,百度APP以图文、图案、短视频、直播等多种形式展现两会内容,据统计,直播内容237场,峰值观看人数一度达3800000人,将3800000用科学记数法表示_____.
下列标志图中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
测量某班50名学生的身高,得身高在1.60m以下的学生有20人,则身高在1.60m以下的频率是 .
菱形的一个内角为,且平分这个内角的对角线长为8cm,则这个菱形的面积为 .
化简,并从1,2,3,?2四个数中,取一个合适的数作为x的值代入求值。
如图,抛物线与轴交于A、B两点,与轴交于点C,抛物线的对称轴交轴于点D,已知点A(-1,0),点C(0,2).
(1)求抛物线的函数解析式;
(2)线段BC上有一动点P,过点P作轴的平行线,交抛物线于点Q,求线段PQ的最大值;
(3)若点E在轴上,点F在抛物线上.是否存在以C、D、E、F为顶点且以CD为一边的平行四边形?若存在,请你求出点F的坐标;若不存在,请说明理由.