题目内容

如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为(  )
A、
6
B、2
3
C、3
D、2
6
考点:轴对称-最短路线问题,正方形的性质
专题:
分析:由于点B与D关于AC对称,所以连接BD,与AC的交点即为F点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.
解答:解:连接BD,与AC交于点F.
∵点B与D关于AC对称,
∴PD=PB,
∴PD+PE=PB+PE=BE最小.
∵正方形ABCD的面积为12,
∴AB=2
3

又∵△ABE是等边三角形,
∴BE=AB=2
3

故所求最小值为2
3

故选B.
点评:此题主要考查轴对称--最短路线问题,要灵活运用对称性解决此类问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网