题目内容
平行四边形ABCD的周长为32cm,AB=6cm,对角线BD=8cm,则此平行四边形ABCD的面积为________cm2.
48
分析:先由平行四边形ABCD的周长为32cm,AB=6cm,求出AD的长,再根据勾股定理的逆定理可知对角线BD⊥AB,继而可求出平行四边形的面积.
解答:
解:∵平行四边形ABCD的周长为32cm,AB=6cm,
∴AD=32÷2-6=10cm,
∵62+82=102,
∴BD⊥AB,
∴平行四边形ABCD的面积=AB×BD=6×8=48cm2.
故答案为:48.
点评:本题考查了平行四边形的性质,难度不大,根据勾股定理的逆定理得出对角线BD⊥AB是关键.
分析:先由平行四边形ABCD的周长为32cm,AB=6cm,求出AD的长,再根据勾股定理的逆定理可知对角线BD⊥AB,继而可求出平行四边形的面积.
解答:
∴AD=32÷2-6=10cm,
∵62+82=102,
∴BD⊥AB,
∴平行四边形ABCD的面积=AB×BD=6×8=48cm2.
故答案为:48.
点评:本题考查了平行四边形的性质,难度不大,根据勾股定理的逆定理得出对角线BD⊥AB是关键.
练习册系列答案
相关题目