题目内容
含30°角的直角三角板ABC中,∠A=30°.将其绕直角顶点C顺时针旋转
角(
且
≠ 90°),得到Rt△
,
边与AB所在直线交于点D,过点 D作DE∥
交
边于点E,连接BE.![]()
(1)如图1,当
边经过点B时,
= °;
(2)在三角板旋转的过程中,若∠CBD的度数是∠CBE度数的m倍,猜想m的值并证明你的结论;
(3) 设 BC=1,AD=x,△BDE的面积为S,以点E为圆心,EB为半径作⊙E,当S=![]()
时,求AD的长,并判断此时直线
与⊙E的位置关系.
(1)60
(2)证明略
(3)直线
与⊙E相交
解析
练习册系列答案
相关题目