题目内容
一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1分米的正方体摆在课桌上成如图形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为_________平方分米.
如图,在的正方形格纸中,有一个以格点为顶点的,请你找出格纸中所有与成轴对称且也以格点为顶点的三角形,这样的三角形共有 个.
如图,在□ABCD中,AE⊥BD于E,CF⊥BD于F,连接AF,CE.求证:AF=CE.
不等式组的解集在数轴上表示正确的是( )
A. B. C. D.
解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?
如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是( )
A. 13cm B. 2cm C. cm D. 2cm
如图,放置的一个机器零件,其主视图如图②所示,则其俯视图是
A.
B.
C.
D.
某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分.某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( )
A. 甲 B. 甲与丁 C. 丙 D. 丙与丁
如图,已知点P为ΔABC边BC上一点.请用直尺和圆规作一条直线EF,使得点A关于EF的对称点为点P(保留作图痕迹,不写作法)