题目内容
在△ABC中,∠A、∠B、∠C的对应边分别是a、b、c,若∠A+∠C=90°,则下列等式中成立的是( )
分析:由已知两角之和为90度,利用三角形内角和定理得到三角形为直角三角形,利用勾股定理即可得到结果.
解答:解:∵在△ABC中,∠A+∠C=90°,
∴∠B=90°,
∴△ABC为直角三角形,
则根据勾股定理得:a2+c2=b2.
故选C
∴∠B=90°,
∴△ABC为直角三角形,
则根据勾股定理得:a2+c2=b2.
故选C
点评:此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.
练习册系列答案
相关题目
在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
在△ABC中,a=
,b=
,c=2
,则最大边上的中线长为( )
| 2 |
| 6 |
| 2 |
A、
| ||
B、
| ||
| C、2 | ||
| D、以上都不对 |