题目内容
如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE.下列说法:
①△ABD和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.
其中正确的有
- A.1个
- B.2个
- C.3个
- D.4个
C
分析:①△ABD和△ACD是等底同高的两个三角形,其面积相等;
②注意区分中线与角平分线的性质;
③由全等三角形的判定定理SAS证得结论正确;
④、⑤由③中的全等三角形的性质得到.
解答:①∵AD是△ABC的中线,
∴BD=CDF,
∴△ABD和△ACD面积相等;
故①正确;
②若在△ABC中,当AB≠AC时,AD不是∠BAC的平分线,即∠BAD≠∠CAD.即②不一定正确;
③∵AD是△ABC的中线,
∴BD=CD,
在△BDF和△CDE中,
,
∴△BDF≌△CDE(SAS).
故③正确;

④∵△BDF≌△CDE,
∴∠CED=∠BFD,
∴BF∥CE;
故④正确;
⑤∵△BDF≌△CDE,
∴CE=BF,
∴只有当AE=BF时,CE=AE.
故⑤不一定正确.
综上所述,正确的结论是:①③④,共有3个.
故选C.
点评:本题考查了全等三角形判定和性质,解题的关键是证明△BDF≌△CDE.
分析:①△ABD和△ACD是等底同高的两个三角形,其面积相等;
②注意区分中线与角平分线的性质;
③由全等三角形的判定定理SAS证得结论正确;
④、⑤由③中的全等三角形的性质得到.
解答:①∵AD是△ABC的中线,
∴BD=CDF,
∴△ABD和△ACD面积相等;
故①正确;
②若在△ABC中,当AB≠AC时,AD不是∠BAC的平分线,即∠BAD≠∠CAD.即②不一定正确;
③∵AD是△ABC的中线,
∴BD=CD,
在△BDF和△CDE中,
∴△BDF≌△CDE(SAS).
故③正确;
④∵△BDF≌△CDE,
∴∠CED=∠BFD,
∴BF∥CE;
故④正确;
⑤∵△BDF≌△CDE,
∴CE=BF,
∴只有当AE=BF时,CE=AE.
故⑤不一定正确.
综上所述,正确的结论是:①③④,共有3个.
故选C.
点评:本题考查了全等三角形判定和性质,解题的关键是证明△BDF≌△CDE.
练习册系列答案
相关题目