题目内容
点m(2,-1)关于原点对称的点的坐标为( )
A. (-2,-1) B. (2,1) C. (-2,1) D. (2,-1)
有一个面积为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形(如图1),其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,生出了4个正方形(如图2),如果按此规律继续“生长”下去,它将变得“枝繁叶茂”.在“生长”了2 017次后形成的图形中所有正方形的面积和是( )
图1 图2
A. 2015 B. 2016 C. 2017 D. 2018
点、、在格点图中的位置如图所示,格点小正方形的边长为1,则点到线段所在直线的距离是_____.
某印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:
(1)填空:甲种收费的函数表达式是 ,乙种收费的函数表达式是 .
(2)请你根据不同的印刷数量帮忙确定选择哪种印刷方式较合算.
已知抛物线y= -(x-2)2 的图像上有两点(2017,y2)和(2018,y2),则y1与y2的大小关系是_________
如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
A. 15° B. 20° C. 25° D. 30°
某产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点在原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元.(毛利润=销售额-生产费用)
(1)请直接写出y与x以及z与x之间的函数关系式;
(2)求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?
(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?
2010年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是( )
A. 32,31 B. 31,32 C. 31,31 D. 32,35
如图,矩形ABCD 的对角线AC、BD 交于点O,∠AOD=60″,AB=2,AE⊥BD 于点E,则OE长_____.