题目内容

△ABC中,AB=AC,点O为△ABC的外心,AC=数学公式,BC=2,则cos∠BAC=


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:延长AO交BC于点D,过点B作BE⊥AC于点E,先根据等腰三角形的性质求出CD的长,由相似三角形的判定定理得出Rt△BCE∽Rt△ACD,再由相似三角形的对应边成比例即可求出CE的长,进而得出AE的长,根据cos∠BAC=即可得出结论.
解答:解:延长AO交BC于点D,过点B作BE⊥AC于点E,
∵AB=AC,点O是△ABC的外心,
∴AD⊥BC,BD=CD,
∴CD=BC=1,
∵∠C=∠C,∠DAC=∠CBE,
∴Rt△BCE∽Rt△ACD,
=,即=
解得CE=
∴AE=AC-CE=-=
∴cos∠BAC===
故选B.
点评:本题考查的是三角形的外心及等腰三角形的有关知识,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网