搜索
题目内容
(2012•广州)如图,正比例函数y
1
=k
1
x和反比例函数y
2
=
k
2
x
的图象交于A(-1,2)、B(1,-2)两点,若y
1
<y
2
,则x的取值范围是( )
A.x<-1或x>1
B.x<-1或0<x<1
C.-1<x<0或0<x<1
D.-1<x<0或x>1
试题答案
相关练习册答案
分析:
根据图象找出直线在双曲线下方的x的取值范围即可.
解答:
解:由图象可得,-1<x<0或x>1时,y
1
<y
2
.
故选D.
点评:
本题考查了反比例函数与一次函数的交点问题,数形结合是解题的关键.
练习册系列答案
金牌教练系列答案
跟我学系列答案
精考卷全程测试系列答案
名师点津系列答案
零失误分层训练系列答案
黄冈密卷系列答案
自主创新课时作业系列答案
世纪金榜金榜小博士系列答案
培优竞赛超级课堂系列答案
黄冈小状元达标卷系列答案
相关题目
(2012•广州)如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为
2
2
.
(2012•广州)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是( )
A.26
B.25
C.21
D.20
(2012•广州)如图,⊙P的圆心为P(-3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.
(1)在图中作出⊙P关于y轴对称的⊙P′.根据作图直接写出⊙P′与直线MN的位置关系.
(2)若点N在(1)中的⊙P′上,求PN的长.
(2012•广州)如图,抛物线y=
-
3
8
x
2
-
3
4
x+3
与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)求点A、B的坐标;
(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;
(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.
(2012•广州)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).
(1)当α=60°时,求CE的长;
(2)当60°<α<90°时,
①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.
②连接CF,当CE
2
-CF
2
取最大值时,求tan∠DCF的值.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案