题目内容
如图,正方形ABCD的边长是3,点P是直线BC上一点,连接PA,将线段PA绕点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF,CF.(1)如图?,当点P在CB延长线上时,求证:四边形PCFE是平行四边形;
(2)如图?,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由;
(3)在(2)的条件下,四边形PCFE的面积是否有最大值?若有,请求出面积的最大值及此时BP长;若没有,请说明理由.
【答案】分析:(1)由正方形的性质可以得出AB=BC,∠ABP=∠ABC=∠90°,可以得出△PBA≌△FBC,由其性质就可以得出结论;
(2)由正方形的性质可以得出AB=BC,∠FBC=∠ABC=∠90°,可以得出△PBA≌△FBC,由其性质就可以得出结论;
(3)设BP=x,则PC=3-x 平行四边形PEFC的面积为S,由平行四边形的面积公式就可以求出其解析式,再根据二次函数的性质就可以求出其最大值.
解答:解:(1)∵四边形ABCD是正方形,
∴AB=BC,∠ABC=∠PBA=90°
∵在△PBA和△FBC中,
,
∴△PBA≌△FBC(SAS),
∴PA=FC,∠PAB=∠FCB.
∵PA=PE,
∴PE=FC.
∵∠PAB+∠APB=90°,
∴∠FCB+∠APB=90°.
∵∠EPA=90°,
∴∠APB+∠EPA+∠FCP=180°,
即∠EPC+∠PCF=180°,
∴EP∥FC,
∴四边形EPCF是平行四边形;
(2)结论:四边形EPCF是平行四边形,
∵四边形ABCD是正方形,
∴AB=BC,∠ABC=∠CBF=90°
∵在△PBA和△FBC中,
,
∴△PBA≌△FBC(SAS),
∴PA=FC,∠PAB=∠FCB.
∵PA=PE,
∴PE=FC.
∵∠FCB+∠BFC=90°,
∠EPB+∠APB=90°,
∴∠BPE=∠FCB,
∴EP∥FC,
∴四边形EPCF是平行四边形;
(3)设BP=x,则PC=3-x 平行四边形PEFC的面积为S,
S=PC•BF=PC•PB=(3-x)x
=-(x-
)2+
.
∵a=-1<0,
∴抛物线的开口向下,
∴当x=
时,S最大=
,
∴当BP=
时,四边形PCFE的面积最大,最大值为
.
点评:本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,平行四边形的判定及性质的运用,平行四边形的面积公式的运用,二次函数的性质的运用,解答时灵活运用平行四边形的判定方法是关键.
(2)由正方形的性质可以得出AB=BC,∠FBC=∠ABC=∠90°,可以得出△PBA≌△FBC,由其性质就可以得出结论;
(3)设BP=x,则PC=3-x 平行四边形PEFC的面积为S,由平行四边形的面积公式就可以求出其解析式,再根据二次函数的性质就可以求出其最大值.
解答:解:(1)∵四边形ABCD是正方形,
∴AB=BC,∠ABC=∠PBA=90°
∵在△PBA和△FBC中,
∴△PBA≌△FBC(SAS),
∴PA=FC,∠PAB=∠FCB.
∵PA=PE,
∴PE=FC.
∵∠PAB+∠APB=90°,
∴∠FCB+∠APB=90°.
∵∠EPA=90°,
∴∠APB+∠EPA+∠FCP=180°,
即∠EPC+∠PCF=180°,
∴EP∥FC,
∴四边形EPCF是平行四边形;
(2)结论:四边形EPCF是平行四边形,
∵四边形ABCD是正方形,
∴AB=BC,∠ABC=∠CBF=90°
∵在△PBA和△FBC中,
∴△PBA≌△FBC(SAS),
∴PA=FC,∠PAB=∠FCB.
∵PA=PE,
∴PE=FC.
∵∠FCB+∠BFC=90°,
∠EPB+∠APB=90°,
∴∠BPE=∠FCB,
∴EP∥FC,
∴四边形EPCF是平行四边形;
(3)设BP=x,则PC=3-x 平行四边形PEFC的面积为S,
S=PC•BF=PC•PB=(3-x)x
=-(x-
∵a=-1<0,
∴抛物线的开口向下,
∴当x=
∴当BP=
点评:本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,平行四边形的判定及性质的运用,平行四边形的面积公式的运用,二次函数的性质的运用,解答时灵活运用平行四边形的判定方法是关键.
练习册系列答案
相关题目