题目内容

如图,E,G,F,H分别是矩形ABCD四条边上的点,EF⊥GH,若AB=2,BC=3,则EF:GH=


  1. A.
    2:3
  2. B.
    3:2
  3. C.
    4:9
  4. D.
    无法确定
B
分析:本题主要利用矩形的性质进行做题.
解答:
过F作FM⊥AB于M,过H作HN⊥BC于N,
则∠4=∠5=90°=∠AMF
∵四边形ABCD是矩形,
∴AD∥BC,AB∥CD,∠A=∠D=90°=∠AMF,
∴四边形AMFD是矩形,
∴FM∥AD,FM=AD=BC=3,
同理HN=AB=2,HN∥AB,
∴∠1=∠2,
∵HG⊥EF,
∴∠HOE=90°,
∴∠1+∠GHN=90°,
∵∠3+∠GHN=90°,
∴∠1=∠3=∠2,
即∠2=∠3,∠4=∠5,
∴△FME∽△HNG,
==
∴EF:GH=AD:CD=3:2.
故选B.
点评:本题的关键是证明四边形CGHD∽四边形DFEA,然后利用对应边比相等求EF:GH的值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网