题目内容

如图4,将矩形ABCD绕点A顺时针旋转90o后,得到矩形AB’C’D’,若CD=8,AD=6,连接CC’,那么CC’的长是

A.20             B.10          C.10           D.100

 

【答案】

B.

【解析】

试题分析:矩形ABCD绕点A顺时针旋转90°得到矩形AB′C′D′,可知旋转中心为点A,旋转角∠CAC′=90°,根据对应点C、C′到旋转中心的距离相等可知,AC=AC′,先在Rt△ACD中用勾股定理求AC,再在Rt△CAC′中,利用勾股定理求CC′.

由旋转的性质可知,∠CAC′=90°,AC=AC′,

Rt△ACD中,由勾股定理得,

AC=

在Rt△CAC′中,由勾股定理得,

CC′=

故选B.

考点: 旋转的性质.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网