题目内容
分析:由折叠的性质可得AF=AB=10,在RT△ADF中可求出DF的长度,进而设BE=x,则EF=x,CE=8-x,CF=10-DF,利用勾股定理可得出BE的长度.
解答:解:由折叠的性质可得,AF=AB=10,
在RT△ADF中,DF=
=6;
设BE=x,则EF=x,CE=8-x,CF=10-DF=4,
在RT△EFC中,EF2=CE2+CF2,即x2=(8-x)2+42,
解得:x=3,即BE=3;
综上可得:DF=6,BE=3.
在RT△ADF中,DF=
| AF2-AD2 |
设BE=x,则EF=x,CE=8-x,CF=10-DF=4,
在RT△EFC中,EF2=CE2+CF2,即x2=(8-x)2+42,
解得:x=3,即BE=3;
综上可得:DF=6,BE=3.
点评:此题考查了翻折变换的知识,解答本题的关键是掌握翻折前后对应边相等,另外要熟练勾股定理在解直角三角形中的应用.
练习册系列答案
相关题目