题目内容

【题目】问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD= ∠BAC=60°,于是 = = ; 迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠ADE=120°,D,E,C三点在同一条直线上,连接BD.

(1)①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;
(2)拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.
①证明△CEF是等边三角形;
②若AE=5,CE=2,求BF的长.

【答案】
(1)解:①证明:如图②

∵∠BAC=∠ADE=120°,

∴∠DAB=∠CAE,

在△DAE和△EAC中,

∴△DAB≌△EAC,

②解:结论:CD= AD+BD.

理由:如图2﹣1中,作AH⊥CD于H.

∵△DAB≌△EAC,

∴BD=CE,

在Rt△ADH中,DH=ADcos30°= AD,

∵AD=AE,AH⊥DE,

∴DH=HE,

∵CD=DE+EC=2DH+BD= AD+BD


(2)解::①证明:如图3中,作BH⊥AE于H,连接BE.

∵四边形ABCD是菱形,∠ABC=120°,

∴△ABD,△BDC是等边三角形,

∴BA=BD=BC,

∵E、C关于BM对称,

∴BC=BE=BD=BA,FE=FC,

∴A、D、E、C四点共圆,

∴∠ADC=∠AEC=120°,

∴∠FEC=60°,

∴△EFC是等边三角形,

②解:∵AE=5,EC=EF=2,

∴AH=HE=2.5,FH=4.5,

在Rt△BHF中,∵∠BHF=30°,

=cos30°,

∴BF= =3


【解析】迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;②结论:CD= AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=ADcos30°= AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD= AD+BD,即可解决问题; 拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;
②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BHF=30°,可得 =cos30°,由此即可解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网