题目内容
【题目】如图,四张正面分别写有1、2、3、4的不透明卡片,它们的背面完全相同,现把它们洗匀,背面朝上放置后,开始游戏
游戏规则如下:
连摸三次,每次随机摸出一张卡片,并翻开记下卡片上的数字,每次摸出后不放回,如果第三次摸出的卡片上的数字,正好介于第一、二次摸出的卡片上的数字之间,则游戏胜出,否则,游戏失败
问:
若已知小明第一次摸出的数字是4,第二次摸出的数字是2,在这种情况下,小明继续游戏,可以获胜的概率为______.
若已知小明第一次摸出的数字是3,求在这种情况下,小明继续游戏,可以获胜的概率
要求列表或用树状图求![]()
![]()
【答案】(1)
(2)![]()
【解析】
(1)依据第三次摸出的卡片上的数字可能是1或3,其中摸到3能获胜,即可得到小明继续游戏可以获胜的概率;
(2)依据小明第一次摸出的数字是3,画出树状图,即可得到6种等可能的情况,其中第三次摸到的数介于前两个数之间的只有一种情况,进而得出小明获胜的概率.
(1)小明第一次摸出的数字是4,第二次摸出的数字是2,在这种情况下,小明继续游戏,第三次摸出的卡片上的数字可能是1或3,其中摸到3能获胜,∴可以获胜的概率为
.
故答案为:
;
(2)画树状图如下:
![]()
共有6种等可能的情况,其中第三次摸到的数介于前两个数之间的只有一种情况:(3,1,2),则P(小明能获胜)
.
练习册系列答案
相关题目