题目内容

【题目】如图,在ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接BE、BF,使它们分别与AO相交于点G、H.

(1)(1)求EG:BG的值;
(2)(2)求证:AG=OG;
(3)(3)设AG=a,GH=b,HO=c,求a:b:c的值.

【答案】
(1)

∵四边形ABCD是平行四边形,

∴AO=AC,AD=BC,AD∥BC,

∴△AEG∽△CBG,

==

∵AE=EF=FD,

∴BC=AD=3AE,

∴GC=3AG,GB=3EG,

∴EG:BG=1:3;


(2)

(2)∵GC=3AG(已证),

∴AC=4AG,

∴AO=AC=2AG,

∴GO=AO﹣AG=AG;


(3)

(3)∵AE=EF=FD,

∴BC=AD=3AE,AF=2AE.

∵AD∥BC,

∴△AFH∽△CBH,

===

=,即AH=AC.

∵AC=4AG,

∴a=AG=AC,

b=AH﹣AG=AC﹣AC=AC,

c=AO﹣AH=AC﹣AC=AC,

∴a:b:c==5:3:2.


【解析】(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可得△AEG∽△CBG,由AE=EF=FD可得BC=3AE,然后根据相似三角形的性质,即可求出EG:BG的值;
(2)根据相似三角形的性质可得GC=3AG,则有AC=4AG,从而可得AO=AC=2AG,即可得到GO=AO﹣AG=AG;
(3)根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到a=AC,b=AC,c=AC,就可得到a:b:c的值.
【考点精析】根据题目的已知条件,利用平行四边形的性质和相似图形的相关知识可以得到问题的答案,需要掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;形状相同,大小不一定相同(放大或缩小);判定:①平行;②两角相等;③两边对应成比例,夹角相等;④三边对应成比例.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网