题目内容
(1)若BC=
| 3 |
(2)取BE的中点F,连接DF,求证:DF是⊙O的切线.
分析:(1)先设⊙O的半径为r,由于AB是⊙O的直径,BC是⊙O的切线,根据切线性质可知AB⊥BC,在Rt△OBC中,利用勾股定理可得(r+1)2=r2+(
)2,解得r=1;
(2)连接OF,由于OA=OB,BF=EF,可知OF是△BAE的中位线,那么OF∥AE,于是∠A=∠2,根据三角形外角性质可得
∠BOD=2∠A,易证∠1=∠2,而OD=OB,OF=OF,利用SAS可证△OBF≌△ODF,那么∠ODF=∠OBF=90°,于是OD⊥DF,
从而可证FD是⊙O的切线.
| 3 |
(2)连接OF,由于OA=OB,BF=EF,可知OF是△BAE的中位线,那么OF∥AE,于是∠A=∠2,根据三角形外角性质可得
∠BOD=2∠A,易证∠1=∠2,而OD=OB,OF=OF,利用SAS可证△OBF≌△ODF,那么∠ODF=∠OBF=90°,于是OD⊥DF,
从而可证FD是⊙O的切线.
解答:
解:(1)设⊙O的半径为r,
∵AB是⊙O的直径,BC是⊙O的切线,
∴AB⊥BC,
在Rt△OBC中,∵OC2=OB2+CB2,
∴(r+1)2=r2+(
)2,
解得r=1,
∴⊙O的半径为1;
(2)连接OF,
∵OA=OB,BF=EF,
∴OF是△BAE的中位线,
∴OF∥AE,
∴∠A=∠2,
又∵∠BOD=2∠A,
∴∠1=∠2,
在△OBF和△ODF中,
∴△OBF≌△ODF,
∴∠ODF=∠OBF=90°,
即OD⊥DF,
∴FD是⊙O的切线.
∵AB是⊙O的直径,BC是⊙O的切线,
∴AB⊥BC,
在Rt△OBC中,∵OC2=OB2+CB2,
∴(r+1)2=r2+(
| 3 |
解得r=1,
∴⊙O的半径为1;
(2)连接OF,
∵OA=OB,BF=EF,
∴OF是△BAE的中位线,
∴OF∥AE,
∴∠A=∠2,
又∵∠BOD=2∠A,
∴∠1=∠2,
在△OBF和△ODF中,
|
∴△OBF≌△ODF,
∴∠ODF=∠OBF=90°,
即OD⊥DF,
∴FD是⊙O的切线.
点评:本题考查了勾股定理、全等三角形的判定和性质、中位线的性质,解题的关键是证明△OBF≌△ODF.
练习册系列答案
相关题目