题目内容
若,则m的值为( ).
A.2 B.3 C. D.
如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=2AB、B1C=2BC,C1A=2CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1、C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,经过2015次操作后△A2015B2015C2015的面积为 .
如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( ).
A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC
若关于x的方程有增根,则m的值与增根x的值分别是( ).
A.m=﹣4,x=2 B.m=4,x=2
C.m=﹣4,x=﹣2 D.m=4,x=﹣2
如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是( ).
A.50° B.60° C.70° D.80°
某商店原来平均每天可销售某种水果100千克,每千克可盈利7元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可所多售出20千克.
(1)设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;
(2)若要平均每天盈利400元,则每千克应降价多少元?
(3)每千克降价多少元时,每天的盈利最多?最多盈利多少元?
如图,DE是△ABC的中位线,M是DE的中点,那么= .
(1)阅读理【解析】
如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是 ;
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.
三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为( )
A.14 B.12 C.12或14 D.以上都不对