题目内容
先化简,再求值:a3•(-b3)+(-ab2)3,其中a=,b=4.
如图,路灯OP距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B处时,人影的长度( )
A.变长了1.5米 B.变短了2.5米 C.变长了3.5米 D.变短了3.5
如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].
(1)若一个函数的特征数为[-2,1],求此函数图象的顶点坐标.
(2)探究下列问题:
①若一个函数的特征数为[4,-1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.
②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?
如图是由八个相同的小正方体组合而成的几何体,其俯视图是 ( )
如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=18°,求∠C的度数.
在△ABC中,三边长分别为4、7、x,则x的取值范围是 .
如果一个多边形的边数增加1,则它的内角和将( )
A.增加90° B.增加180° C.增加360° D.不变
当x= 时,分式的值为零.
下列图形中,是轴对称图形的是( )