题目内容
如图,AB是⊙O的直径,C是的中点,CE⊥AB于 E,BD交CE于点F.
(1)求证:CF﹦BF;
(2)若CD=6,AC=8,求⊙O的半径及CE的长。
甲、乙两个样本的方差分别是s甲2=0.56,s乙2=1.87,由此可反映出( )
A.样本甲的波动比样本乙的波动大;
B.样本甲的波动比样本乙的波动小;
C.样本甲的波动与样本乙的波动大小一样;
D.样本甲和样本乙的波动大小关系不确定
(-1)0+ | 1.4﹣2 |﹣.
如图,已知△ABC,P是边AB上的一点,连结CP,以下条件中不能确定△ACP与△ABC相似的是( )
A.∠ACP=∠B B.∠APC=∠ACB C.AC2=AP·AB D.
如图,在直角坐标系中,已知点P0的坐标为(1,0),进行如下操作:将线段OPo按逆时针方向旋转,再将其长度伸长为OP0的2倍,得到线段OP1 ;又将线段OP1按逆时针方向旋转,长度伸长为OP1的2倍,得到线段OP2,如此重复操作下去,得到线段OP3,OP4,, 则
(1)点P5的坐标为
(2)落在x轴正半轴上的点Pn坐标是 ,( n是8的整数倍.)
已知二次函数y=ax2+bx的图象经过点A(-5,0)和点B,其中点B在第一象限,且OA=OB,tan∠BAO=
(1)求点B的坐标。
(2)求二次函数的解析式。
(3)过点B作直线BC平行于x轴,直线BC与二次函数图象的另一个交点为C,连结AC,如果点P在x轴上,且△ABC和△PAB相似,求点P的坐标。
下列各组的两项中是同类项的是( )
A. -xy与2yx2 B. -2xy与-2x2 C. 3a2b与-ba2 D. 2a2与2b2
的平方根是 ,